elmuetog

elmuetog: Наука



Ученые смогли создать устройство для сбора воды из сухого пустынного воздуха. Для этого им требуется только тепло от солнца. Их изобретение может изменить жизни 2,1 миллиарда людей, которые испытывают нехватку чистой питьевой воды. Главное достоинство их изобретения в том, что для его работы не требуется ни электричество, ни дожди. Ранее мы уже сообщали о важном изобретении. Наконец, его смогли испытать.

Группа ученых из Калифорнийского университета в Беркли создала устройство из пористого материала MOF (металлоорганическая конструкция), помещенного в прозрачную пластиковую коробку. Водяной пар из атмосферы собирается с помощью материала MOF как губкой, после чего вода испаряется и собирается в специальный резервуар.

Ученые провели испытание своего устройства в Скоттсдейле, штат Аризона. За сутки они собрали около 7 унций воды. Это совсем немного, но ученые утверждают, что их изобретение крайне легко масштабировать.
Материал MOF состоит из металлических и углеродных органических соединений. Его особенность в существовании большого количества крохотных кармашков с воздухом между молекулами разного типа. Это позволяет материалу собирать конденсат и эффективно поглощать жидкость. Особенно эффективно он делает это ночью, когда относительная влажность увеличивается.
Когда солнце поднимается, тепло вызывает испарение воды из губчатого материала, но так как он заключен в коробку, пар собирается и снова становится водой, попадая в резервуар. После этого ее можно использовать для питья.

Устройства для сбора воды уже существуют, но это первое устройство, которому требуется так мало ресурсов. Существует небольшая проблема – это высокая стоимость производства MOF, так как на данный момент материал производится с использованием дорогостоящего циркония. Однако ученые работают над MOF с применением значительно более дешевого алюминия.
В любой момент времени в нашей атмосфере содержится 13 секстиллиардов литров воды. Получение доступного способа ее использования может решить многие настоящие и будущие проблемы людей.


Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в высоком разрешении динамические процессы, происходящие в живом организме. О результатах своей работы ученые поделились в научном журнале Science, а пример визуализации динамических процессов, в качестве которого выступила съемка передвижения иммунных клеток в эмбрионе рыбки, был представлен в статье журнала Nature.

Благодаря нынешним возможностям световой микроскопии, в частности флюоресцентной микроскопии высокого разрешения, ученые могут рассматривать даже трехмерные фрагменты живых тканей. Ранние работы по преодолению дифракционного предела разрешения светового микроскопа и разработка методов неинвазивной флюоресцентной визуализации принадлежат Эрику Бетцигу, Штефану Хеллу и Уильяму Мернеру. За это ученые даже были удостоены Нобелевской премии по химии в 2014 году.
Исследователи решили на этом не останавливаться. Так? одной из последних разработок Бетцига стала флюоресцентная микроскопия плоскостного освещения (light sheet fluorescence microscopy), позволяющая визуализировать объемные живые биологические образцы в течение длительного времени. А ее модификация, микроскопия светового листа с дискретным освещением (lattice light sheet microscopy — LLSM), позволяет визуализировать быстрые динамические процессы. В основе двух методов лежит быстрое сканирование образца тонким плоским пучком света, позволяющее накапливать большое количество двумерных изображений, которые затем объединяют в трехмерную модель.
У этих методов, тем не менее, есть свои ограничения. Например, неоднородность окружающих тканей вносит искажения при определении сигнала, что уменьшает разрешение картинки. Даже в отсутствие искажений высокое разрешение требует высокой интенсивности облучения, в результате чего живой образец может получить повреждения. Получение самых качественных изображений все равно требовало фиксации и специальной подготовки образцов.
Команда Бетцига смогла обойти эти ограничения и представила комбинированную технику микроскопии, при помощи которой ученые смогли пронаблюдать за множеством разных процессов прямо внутри живого организма. Исследователи получили изображение движения клатриновых пузырьков, динамику клеточных органелл, рост отростков нервных клеток в формирующемся спинном мозге и перемещение иммунных клеток в эмбрионе модельной рыбки данио-рерио. На видео ниже, например, показана миграция иммунных клеток в перилимфатическое пространство внутреннего уха эмбриона.

Для модернизации метода LLSM ученые использовали методы адаптивной оптики, применяемые в создании наземных телескопов, использующихся для астрономии. Команда Бетцига измеряла величину искажений при определении специальной флюоресцентной метки и корректировала их с помощью изменяемой формы адаптивного зеркала. Комбинированная техника получила название AO-LLSM. Уменьшить фототоксичность пучка удалось при помощи ограничения освещения только тонкой плоскостью образца без облучения его основного объема.
Ученые надеются, что их разработка поможет существенно продвинуться в исследовании клеток в их естественной среде. Сейчас команда думает над тем, как уменьшить стоимость подобного микроскопа, а также над тем, как сделать его более компактным. В настоящий момент установка микроскопа занимает трехметровый стол.


[1..2]


Папки